风华笔墨,后庭尘埃。便天光云影,不与徘徊。纵三千里河山,亦四十年蓬莱。青丝染霜,镜鸾沉彩。
TCP(传输控制协议)
- 传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。
- TCP是一种面向广域网的通信协议,目的是在跨越多个网络通信时,为两个通信端点之间提供一条可靠通信方式。
TCP 特点
- 基于流的方式
- 面向连接
- 可靠通信方式
- 在网络状况不佳的时候尽量降低系统由于重传带来的带宽开销
- 通信连接维护是面向通信的两个端点的,而不考虑中间网段和节点
TCP 协议规定
- 数据分片:在发送端对用户数据进行分片,在接收端进行重组,由TCP确定分片的大小并控制分片和重组。
- 到达确认:接收端接收到分片数据时,根据分片数据序号向发送端发送一个确认。
- 超时重发:发送方在发送分片时启动超时定时器,如果在定时器超时之后没有收到相应的确认,重发分片。
- 滑动窗口:TCP连接每一方的接收缓冲空间大小都固定,接收端只允许另一端发送接收端缓冲区所能接纳的数据,TCP在滑动窗口的基础上提供流量控制,防止较快主机致使较慢主机的缓冲区溢出。
- 失序处理:作为IP数据报来传输的TCP分片到达时可能会失序,TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。
- 重复处理:作为IP数据报来传输的TCP分片会发生重复,TCP的接收端必须丢弃重复的数据。
- 数据校验:TCP将保持它首部和数据的检验和,这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到分片的检验和有差错,TCP将丢弃这个分片,并不确认收到此报文段导致对端超时并重发。
TCP 拥塞控制算法
- 慢启动
- 每当建立一个TCP连接时或一个TCP连接发生超时重传后,该连接便进入慢启动阶段。进入慢启动后,TCP实体将拥塞窗口的大小初始化为一个报文段,即:cwnd=1。此后,每收到一个报文段的确认(ACK),cwnd值加1,即拥塞窗口按指数增加。当cwnd值超过慢启动阐值(ssthresh)或发生报文段丢失重传时,慢启动阶段结束。前者进入拥塞避免阶段,后者重新进入慢启动阶段。
- 拥塞避免
- 在慢启阶段,当cwnd值超过慢启动阐值(ssthresh)后,慢启动过程结束,TCP连接进入拥塞避免阶段。在拥塞避免阶段,每一次发送的cwnd个报文段被完全确认后,才将cwnd值加1。在此阶段,cwnd值线性增加。
- 快速重传
- 快速重传是对超时重传的改进。当源端收到对同一个报文的三个重复确认时,就确定一个报文段已经丢失,因此立刻重传丢失的报文段,而不必等到重传定时器(RTO)超时。以此减少不必要的等待时间。
- 快速恢复
- 快速恢复是对丢失恢复机制的改进。在快速重传之后,不经过慢启动过程而直接进入拥塞避免阶段。每当快速重传后,置ssthresh=cwnd/2、ewnd=ssthresh+3。此后,每收到一个重复确认,将cwnd值加1,直至收到对丢失报文段和其后若干报文段的累积确认后,置cwnd=ssthresh,进入拥塞避免阶段。
TCP 建立连接
- TCP是因特网中的传输层协议,使用三次握手协议建立连接。当主动方发出SYN连接请求后,等待对方回答SYN+ACK,并最终对对方的 SYN 执行 ACK 确认。这种建立连接的方法可以防止产生错误的连接,TCP使用的流量控制协议是可变大小的滑动窗口协议。
- 客户端发送SYN(SEQ=x)报文给服务器端,进入SYN_SEND状态。
- 服务器端收到SYN报文,回应一个SYN (SEQ=y)ACK(ACK=x+1)报文,进入SYN_RECV状态。
- 客户端收到服务器端的SYN报文,回应一个ACK(ACK=y+1)报文,进入Established状态。
- 三次握手完成,TCP客户端和服务器端成功地建立连接,可以开始传输数据了。
TCP 断开连接
- 建立一个连接需要三次握手,而终止一个连接要经过四次挥手,这是由TCP的半关闭(half-close)造成的。
- 某个应用进程首先调用close,称该端执行“主动关闭”(active close)。该端的TCP于是发送一个FIN分节,表示数据发送完毕。
- 接收到这个FIN的对端执行 “被动关闭”(passive close),这个FIN由TCP确认。
- 一段时间后,接收到这个文件结束符的应用进程将调用close关闭它的套接字。这导致它的TCP也发送一个FIN。
- 接收这个最终FIN的原发送端TCP(即执行主动关闭的那一端)确认这个FIN。
UDP (用户数据报协议)
- UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。音频和多媒体应用,使用UDP是最好的选择。
UDP 特点
- UDP是一个无连接协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。
- UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包而言UDP的额外开销很小。
- 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。
- UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。
UDP 使用场景
- 在网络质量令人十分不满意的环境下,UDP协议数据包丢失会比较严重。但是由于UDP的特性:它不属于连接型协议,因而具有资源消耗小,处理速度快的优点,所以通常音频、视频和普通数据在传送时使用UDP较多,因为它们即使偶尔丢失一两个数据包,也不会对接收结果产生太大影响。比如我们聊天用的QQ就是使用的UDP协议。
TCP和UDP的区别
- TCP是面向连接的,而UDP是面向无连接的。
- TCP仅支持单播传输,UDP 提供了单播,多播,广播的功能。
- TCP的三次握手保证了连接的可靠性; UDP是无连接的、不可靠的一种数据传输协议,首先不可靠性体现在无连接上,通信都不需要建立连接,对接收到的数据也不发送确认信号,发送端不知道数据是否会正确接收。
- UDP的头部开销比TCP的更小,数据传输速率更高,实时性更好。